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Abstract. First-order perturbative corrections to the ground-state energy and Hartree-Fock 
equations are derived for the system of ( N  + N) identical fermions attracted by a delta- 
function interaction on a circle of length L. Numerical results of Monte Carlo calculations 
for few fermions are presented and discussed. 

1. Introduction 

In a previous paper (Alzetta er al 1984) numerical results were presented from a simple 
lattice computer calculation for a one-dimensional system of few ( N  + N )  identical 
fermions, i.e. N of them ‘spinning up’ and N ‘spinning down’, mutually attracted by 
a delta interaction. The number N was confined there between 3 and 6, the lattice 
was small and coarse-grained, periodic boundary conditions ( PBC) were introduced 
and the density ( p )  of fermions and the strength (g )  of the interaction were kept 
constantly equal to one. Here we present numerical results using the same computa- 
tional technique for two different classes of applications: 

( i )  smaller N ( N  = 1,2,3),  different fermion densities but same strength (g = 1) of 
the delta interaction and same kind of states for the functional integral representation 
of the imaginary time evolution operator; 

(i i)  N = 5, same fermion density ( p  = 1) but different kind of representation of the 
evolution operator and various values of the strength of the interaction. 

These latter applications allow the extension to our context of the variational 
method suggested by Wilson (1981) and applied, for example, by Falcioni et a1 (1982) 
and Berg er al (1982), and also allowed the calculation of the lowest excited-state 
energies in addition to the ground-state energy of the system. Furthermore the statistical 
method appears more efficient in these latter applications and ready for higher- 
dimensional more realistic cases. 

Recent analogous Monte Carlo ( M C )  studies are those performed by Scalapino er 
a1 (1984) for a fermion lattice gas and by Hirsch and Scalapino (1984) in the framework 
of the Hubbard model. The numerical calculations are preceded by some elementary 
analytical results concerning first-order perturbative correction to the ground-state 
energy and the Hartree-Fock (HF) equation for the system of ( N +  N )  fermions with 
a two-body delta attraction among them, confined in a periodic one-dimensional 
interval. 

0305-4470/87/071773 + 14$02.50 0 1987 IOP Publishing Ltd 1773 
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2. Perturbative correction to the energy 

The Hamiltonian of ( N  + N )  particles mutually attracted by a delta-function potential 
in one dimension is the following: 

k = l  k = l  / = I  
( k c / )  

where T = -4 d2/dx2 is the kinetic energy of the single particle (SP) and g is the strength 
of the interaction ( g  > 0). For simplicity units are defined such that h = m = 1. The 
binding energy of the system of ( N  + N )  fermions is 

(2) 

where E;(  N + N )  is the ground-state energy of ( N  + N )  free fermions and E:( N + N )  
is the corresponding energy of the mutually attracting fermions. 

First-order perturbative correction, B(”( N + N ) ,  to the free energy E:( N + N )  is 
given by 

B ( N +  N )  = E t (  N +  N )  - E i ( N +  N )  

B‘”(N+ = -($O(xl, x2, . 5 X2N)/VI$O(XI I x2, . . . 9 X2N)) (3) 

with 

and 

( 5 )  

where d e t [ p , ( x , ) ] ~ = ,  is the determinantal wavefunction built with the lowest SP 

wavefunctions of the N particles. The SP wavefunctions are taken to be the real 
orthonormalised solutions of the SP free equation, which we write below in two different 
notations for the SP energies and SP eigenfunctions: 

1 
N !  $O(xl, x Z , . . . ,  x2N)=-det[~~(x,)1f:=l det[pk(xN+,)12,=l 

T(X)cp/(X) = 77dX)  1 = 1,2,3,  . . . 
T(x)u,(x) = E “ % ( X )  n =0,  *l, 1 2 , .  . . 

with PBC in a one-dimensional interval of length L: 
- 

p l (x )  = 1 / 4 L =  uo(x) 

p2 (x )  = (2/  L)”’ COS kLx = u,(x)  

p3(x)  = (2/ L)”’ sin kLx = U - ~ ( X )  

q4(x) = (2/L)”’ COS 2kLx = u2(x) 

cps(x) = (2/L)”’sin 2kLx = U - ~ ( X )  

(p6(X)=(2/L)I”COS 3 k L ~ =  U3(X) 

7 7 1  = E o = O  

772 = € 1  = 2721 L2 

773 = ELI  = 2 x 2 /  L’ 

774 = E 2  = 4(2r2/ L’) 

vs = E - ~  = 4(2r2 /  L’) 

776 = E~ = a(27r2/ L’) 

where 

kL = 21r/ L E, = n2(2.rr’/ L ~ )  n = 0 , * 1 , * 2 , . .  

( 7 )  
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are the wavenumber quantum and the nth free SP energy in PBC, respectively. The 
relation between ql and E,  is the following: 

t)/ = E I / 2  

7 7 1  = & ( l - 1 ) / 2  

if 1 is even 

if 1 is odd. 
(9) 

Thus we have 

T L  

3L 

T 2  

3L 

E;(  N +  N )  =z ( N 2 -  l ) N  

E k ( N + N ) = 7 ( N 2 + 2 ) N  PBC, N even 

PBC, N odd 

(10) 

for N odd and N even, respectively, for the ground-state energy of the N free particles 
with PBC. For odd N the calculation of (3) is straightforward and gives 

N N  L 

B " ' ( N + N ) = g  1 dxcp:(x)cp:(x)=gN'/L. 
h = l  / = I  0 

For even N the ground-state energy of the unperturbed system is four times degenerate. 
Therefore the solution of the secular equation gives four different values for B"'( N + 
N ) .  However, their average is the same as in (1 1) for odd N .  

In  conclusion the binding energy to first order is proportional to N',  which is the 
number of all possible pairs of interacting particles (no  saturation to this order) and 
is inversely proportional to the size L of the system. 

3. The Hartree-Fock equation 

If we calculate the expectation value (HZN) of the Hamiltonian (1) in the state described 
by the determinantal wavefunction of type ( 5 )  

(12) 

where f;(x,) is any orthonormalised set of S P  wavefunctions satisfying PBC but not 
necessarily solutions of (6), we find 

1 
N !  +N+\ ( x , ,  ~ 2 , .  . . , xzj% j =- d e t [ f ; ( ~ , ) I f ; = ~  det[fk(x*+,)lt,=, 

where 
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together with the normalisation constraint on the varied SP wavefunctions, then imply 
the following H F  equation for the SP wavefunction of the system: 

N 

VHFCfl = -g  c j:cx, 
k = l  

is the H F  potential and  & Y F  are the SP H F  energies. The H F  energy of the system of 
(N + N) fermions will be 

E Y F ( N + N ) = 2  1 e r F + g  2 2 J dxf:(x)j ' i (x).  
f = I  / = I  k = l  0 

The above formulae were already obtained by Lieb and  de  Llano (1978). 

4. Numerical results: first part 

We now present the numerical results for ground-state and binding energies for the 
cases N = 1, 2, 3, obtained by the same procedure used by Alzetta et a1 (1984) for the 
cases N = 3 ,4 ,  5 ,  6. Eigenstates of the position operator are chosen as initial and final 
states of the matrix elements of the imaginary time evolution operator to obtain the 
functional integral representation of the few-particle propagator. For the free case 

1 
E k ( N )  = -lim -In Gk.(fl, p'; t )  

1-x t 

1 E k ( N + N )  = -lim-In G k + N ( f l , p ' ;  t )  
1-x t 

a 1 a2 
a t  2 ax 
- G;(X, y ;  t )  =- 7 G:(x, y ;  t ) .  

For the interacting case 
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where 

h. Y , Y , t )  = 

Gk+,(j', j ' ;  t )  = 

 AI P J A I  det[Gf(.d, yb; f j A i ) l ~ h = l  ( 2 4 ~ )  

(246) 

are the functional integral representations of the N particles and ( N  + N )  interacting- 
particle propagator, respectively. The SP propagator GT is a solution of the following 
equation of time evolution: 

5 G8 ( - I  - 1 .  

d[Al p , [AIIde t [GfO~~,  yb; tlA)l$=I}2 5 

a 
- G f ( x , y ;  flA) = a t  t ) ) G ? ( x , y ;  tlA) 

and A(x, t )  is the common random field with white-noise-type Gaussian distribution 

p,[A] = exp( - $  lo' dT 1 d x  A*(x, 7 ) )  

f 

J dIAI p6LA1 = 1 .  

We will verify that 

Gk( t )  = Gh( t )  E: (  N )  = E i (  N )  (27) 

as a consequence of the Pauli exclusion principle, i.e. the determinantal structure of 
the propagator. 

The L x JT spacetime lattice for the MC calculations was taken fixed as far as the 
time spacing ( E  =0.25) and spatial spacing ( a  = 1 )  was concerned. Different values 
for E ( E  = 0.125, E = 0.5) were tested and found uninteresting or inconvenient: the 
E = 0.125 case uselessly removed the time asymptotic region further, whereas the E = 0.5 
case augmented the intensity of the random fluctuations of the results in the step 
concerning the numerical solution of the differential equation (25). 

Different values for the length L, i.e. the number of space sites, were systematically 
taken in order to check the variation of the results with particle density p = 2 N /  L. A 
unit strength (g = 1 )  for the delta interaction has been introduced everywhere in this 
first part of our numerical calculations. 

The results are summarised in table 1 .  The meaning of the  various quantities present 
in table 1 is the following: N is the number of fermions of the same species, L is the 
length of space lattice, i.e. the number of space lattice sites, since a = 1 .  By E we mean 
time lattice spacing, JT is the number of time lattice sites. E;(  N )  of column 5 is the 
ground-state energy of N free fermions of the same colour, analytically derived in 
three different cases. 

(a )  The ( a  = 0, E = 0) case is the spacetime continuum case, in which SP energies are 

E" (a=o ,  &=0)=(2T*/L2)n2  PBC, n=0 ,*1 ,*2  , . . . .  (28) 
(b) The ( a  = 1, E = 0) case is the intermediate case of discrete-space continuous-time 

(29) 

calculations, for which SP energies are 

&,(U = 1, E = 0) = 1 -cos(2.rrn/L) PBC, n =0, * l ,  1 2 , .  . . . 
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(c) The ( a  = 1, E )  case comes from the SP spacetime lattice spectrum, analytically 
approximated by taking into account the effect of the finite size of spacetime lattice 
spacing on SP energies in the spacetime continuum: 

E,  ( a  = 1, E )  = &,(a = 0, E = 0) +:( E - $ ) E : (  a = 0, E = 0) (30) 

(the above formula is valid for small values of n only, see (52) of Alzetta et af (1984)). 
The values E k ( N )  in the sixth column are numerical results of our computer 

calculation. The procedure which leads to them is widely explained in § 4 of Alzetta 
et af (1984). We here summarise the main lines of the procedure: we first introduced 
a L x  JT spacetime lattice with L spatial sites of length a = 1 and JT time sites of 
length E = 0.25, imposed periodicity on the space component and solved equation (22) 
numerically for the free particle. Then we calculated, for JT different values of time, 
the Green function for N free indistinguishable fermions, i.e. the determinant of (20a). 
The final results appeared independent of the choice of the initial state configuration 
J i ;  as far as final states are concerned we did not choose any particular state, since 
we calculated instead the sum of all GL with different possible final states 7’ consistent 
with the Pauli principle. The advantage of such a summation was that it delocalised 
the final state of the system consequently anticipating, by the uncertainty principle, 
the time asymptotic exponential region for the Green function, necessary to extract, 
by means of (19), the energy of the ground state. 

The quantities (E:( N ) )  in column 7 oi” table 1 are MC averages of the ground-state 
energies of N indistinguishable fermions among which a delta potential is present but 
actually ineffective as it is manifest in the results showing only negligible discrepancies 
with free case E k ( N ) .  The terms p in column 8 indicate the standard errors of the 
preceding averages ( E : ( N ) )  listed in column 7. Columns 7 and 8 contain the first 
significant results of our numerical experiment and should be used as a check of our 
statistical accuracy. 

In columns 9-12 the corresponding values for the ( N  + N )  system are presented. 
In order to obtain the computer results of column 10 of table 1, the same procedure 
which yields column 6 was carried out, with the only difference being squaring the 
Slater determinant in order to obtain, by (20b), the Green function of ( N +  N )  free 
fermions of two species. The numerical results listed in columns 7 and 11 of table 1 
are obtained by substituting (23)-(25) to (19)-(22) in the numerical procedure pre- 
viously explained for the free case. The random common field A(x ,  t )  of (25) was 
simulated by extracting from the computer a finite but large and discrete Gaussian 
distribution of random lattice fields A ( x i ,  t j )  ( i  = 1,2, . . . , L;  j = 1,2, . . . , JT) .  We have 
called NC, and listed in column 14 of table 1 as the number of MC sweeps, the number 
of such random fields which have been constructed by assigning each point of the 
spacetime lattice NC random numbers in a numerically approximated Gaussian 
distribution with zero mean and unit standard deviation. 

The last three columns (13-15) indicate the binding energy: 

B (  N + N )  = E t (  N +  N )  -(E:( N + N ) )  (31) 
the number NC of MC sweeps and finally the CPU time spent on a VAX 11/780. 

We postpone to § 6 comments and discussion on the above results and their 
comparison with those results on the same problem already present in the literature. 
We want here to comment on one single point only: the result listed in row 13 of table 
1 ( N  = 3, L = 6 ,  E = 0.25, JT = 50), if compared with the corresponding results pre- 
viously obtained by Alzetta et a1 (1984), shows a considerable discrepancy in the most 
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interesting values E:(3 + 3 )  and B ( 3  + 3 ) :  1.68 and 0.46, respectively, against 1.85 and 
0.29 of that paper. These discrepancies, which are beyond statistical errors p (0.05 
and 0.06, respectively), are probably due to the previous too poor statistics (only 3000 
MC sweeps) used in the earlier work. 

5. Numerical results: second part 

In the second part of our numerical experiment on delta-function interaction, we 
changed the states of the representation of the time-evolution operator: instead of 
looking for the functional integral representation of the N- and ( N  + N)-particle 
propagator, we built up the representation of the imaginary time evolution operator 
into the space of eigenstates of the energy of N and ( N +  N )  free particles. The 
following quantity: 

R p a ( t )  = (PI exp(-tHN)Ia) ( 3 2 )  

represents the matrix element of the imaginary time evolution operator of N fermions 
calculated between two eigenstates of the energy of N free indistinguishable fermions, 
i.e. between two Slater determinants built with N different eigenfunctions of type ( 7 ) .  
We use the following notation for the main formulae: 

Rpa( t )  =(PI exP(- tHN)I~)  

F,,m(OIA) = 61.m. ( 3 5 )  

fm(x; tlA) = e x p [ - t h ] ( x l A ) l ~ ~ ( x )  

The following wavefunction: 

is the solution of the same differential equation ( 2 5 )  satisfied by the SP propagator G f :  

The cp are defined in (7)  and 

A(x, t )  is the common random field and 1 and m run over all SP quantum numbers 
present in the N-particle states P and a, respectively. 
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For the ( N  + N)-particle system we have simply to square determinants. The matrix 

(38)  

are NS x NS matrices, where NS is the dimension of the truncated space of N-fermion 
states, namely the number of different N-fermion states we introduced in the calcula- 
tions. We verified that with this second choice of initial and final states the time 
asymptotic region for (19) and (23) was immediately reached at the second or third 
time step of the computer calculations, instead of after nearly ten steps of the first, 
propagator, case, with a consequent saving of computer time. 

In order to correct for the effect of the truncation of the set of N-particle states, 
we adopted the Wilson variational procedure used by Falcioni et a1 (1982) and Berg 
et a1 (1982). We define the following NS x NS matrices: 

R ( t )  in (32), as well as the following matrix: 

R R  ( t )  = ({det[F,,m (tlA)l T m  = 11’)pa 

C ( n ) = R ( t = n s )  C C ( n )  = R R ( t  = n s )  n = 0 ,  1 , 2 , . .  , , JT-1 (39) 

and then construct the following NS x NS matrices: 

and 

C F ( n ) =  c (n- l ) [C(n-2 )1 - ’C(n- l )  
(40b) 

CCF( n ) = CC( n - 1)[ CC( n - 2)]-’ CC( n - 1) 

Inside a non-truncated state space ( N S  = C O )  we would have exactly 

C T ( n )  = C(1) (41 1 

CF( n )  = C( n )  CCF( n )  = CC( n )  n = 3 , 4 , 5  , . . . ,  JT-1. (42) 

n = 3 ,4 , .  . . , IT-  1 .  

CCT( n )  = CC( 1 )  n = 1 , 2 , 3 ,  . . . , JT - 1 

and 

In our truncated NS-state space ( N S  = 5-8) we will have approximately results (41), 
and (42) will work as a consistency check of the approach at higher times. 

Diagonalising matrices (40) into the space of NS lowest N-particle states, one will 
obtain the lower part of the spectrum of the N-particle and ( N  + N)-particle system. 
Calling v t (n)  and T v t ( n )  ( n  = 1 , 2 , .  . . , JT - 1 )  any one of the NS eigenvalues of the 
2 x (JT - 1 )  matrices (40a), we will be authorised to write 

for the lowest energy levels of N fermions and ( N  + N )  fermions, respectively. 
In table 2 we summarise the results of our numerical experiment for the system of 

five fermions of the same species. Each of the seven energy levels reported in columns 
3, 5, 7, 9, 1 1 ,  13 and 1 5  is the average, for a different value of g in each column, of 
the JT - 1 energies extracted from the eigenvalues of CT(  n )  matrices ( n  = 1 , 2 ,  , , , , JT - 
1 )  by means of (43) and each CT value beside it on the right-hand side is the standard 
deviation from that average of those JT - 1 energies. The number JT of time steps 
was equal to 8 or 7. The length L of the spatial periodic interval was kept constant 
and equal to ten ( p  = 1 ) .  A time lattice spacing E = was chosen. NS is 7; in fact, we 
list seven energy levels. However, results appeared insensitive to small variations (5-8) 
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(44) 

of NS. Different strengths g (g = 1, 2, 3 ,  4, 5,  6 and 10) for the delta force were taken 
which forced us to raise proportionally, from 1000 to 10000, the number NC of MC 

sweeps to keep the fluctuations of the results nearly constant, as is manifest from the 
ninth row of table 2 which shows the average values (a)  of the standard deviations of 
the energies listed above them. The seven five-fermion states were chosen as follows, 
in the I-quantum number notation of (7): 

I I ) =  ( 1 , 2 , 3 , 4 , 5 )  

12) = ( 1 , 2 , 3 , 4 , 6 )  

i3)= ( 1 , 2 , 4 , 5 , 6 )  

14) = ( 1 , 2 , 3 , 6 , 7 )  

15) = ( 2 , 3 , 4 , 5 , 6 )  

16) = ( 1 , L  3 , 6 8 1  

17) = ( 1 , 4 , 5 , 6 , 7 ) .  

A comparison of the results obtained by MC simulation of the delta interaction reported 
in columns 3, 5,  7, 9, 1 1 ,  13 and 15 with the results of the computer calculation for 
free fermions, reported in column 2 of the same table 2, confirms the statistical accuracy 
of our calculations. 

In  table 3 we report the corresponding results for the case of the system of (5  + 5)  
fermions. In row 9 the average values are reported of the numbers listed above them 
in the same column. In  row 10 we list the standard deviations a ( B )  from the mean 
value ( B )  of the binding energies reported in the same column. 

6. Discussion of results 

(a) The average value of the binding energy for (5 + 5 )  particles with g = 1 reported 

(B(5+5))=0.35*0.03 (45) 
agrees with the result ( BS = 0.38) previously obtained by Alzetta et a1 (1984) with the 
first method. 

(b) For g different from one, the numbers listed in the twelfth row of table 3 
suggest that the binding energy is proportional to the coupl.ing constant: 

in table 3: 

B ( N +  N)a g (46) 
at least for small g. 

energy B(1+ 1 )  reported in table 1 :  the result is the following: 
(c) For N = 1 a least-squares fit has been made of the L dependence of the binding 

(47) 
with d =0.274*0.012 ( g  = 1 ) .  

Let us recall that the energy of the bound state of a pair of identical but distinguish- 
able particles attracted by a delta potential for open (i.e. no wall of any kind to contain 
the particles) boundary conditions (density p = 0) was calculated by McGuire (1966) 
and found to be 

(48) 

B( 1 + 1, L )  = d /  L 

E t (  1 + 1 )  = -g2/4. 
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I 1 1 I I I 
0.5 1.0 1.5 2.0 

v / g  

Figure 1. Binding energy per particle divided by the square of the strength of the delta 
force, b / g 2 ,  plotted against density per unit coupling, p / g ;  p = 2 N /  L. W refers to values 
from Aguilera-Navarro ef a/ (1982), while 0 refers to the present work and to the earlier 
paper by Alzetta er al (1984). Small numbers near points indicate the total number of 
fermions 2 N .  b =  B ( N +  N ) / 2 N .  

Now if we apply to (47) our conjecture (46), we would have the following L and g 
dependence of B(1+ 1):  

(49) 
Comparison of (49) with (48) suggests that L works like l / g  for large systems (scaling 
property, see Lieb and de Llano (1978)). 

(d )  In figure 1 we compare our numerical results, together with those of the previous 
paper (Alzetta et a1 1984), with the values produced by Aguilera et a1 (1982) by solving 
numerically the Gaudin equations which give the exact ground-state energy per particle, 
~ ( p )  = E,6(N+ N)/2N,  for any value of the density p = 2 N /  L of the system. Figure 
1 shows the numerical values b / g 2  of the binding energy per particle b divided by the 
square of the coupling constant g plotted against p / g ,  namely the density p per unit 
coupling. Square points refer to the values extracted from the results reported by 
Aguilera et a1 (1982), while round points refer to this work and the earlier paper. The 
above comparison, however, is rather far from being significant because, while we use 
small numbers N of fermions in periodic boundary conditions, all those numbers, as 
well as all others produced by various authors and reported by Aguilera et a1 (1982), 
are given in the limit of large system (Lieb and Liniger 1963, Gaudin 1967) or in the 
thermodynamic limit (Overhauser 1960, de Llano and Plastino 1976, Dohnert et a1 
1978, Gutierrez and Plastino 1981). 

(e) From figure 1 one can appreciate the rather good agreement of our results for 
the same p / g  but different values of N, even before the thermodynamic limit. 

B(1+ 1, L, g )  = ( d / L ) g .  
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